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A three-dimensional analysis is presented of the Stokes flow, adjacent to a Brinkman
half-space, that is induced or altered by the presence of a sphere in the flow field that
(a) translates uniformly without rotating, (b) rotates uniformly without translating, or
(c) is fixed in a shear flow that is uniform in the far field. The linear superposition of
these three flow regimes is also considered for the special case of the free motion of a
neutrally buoyant sphere. Exact solutions to the momentum equations are obtained
in terms of infinite series expansions in the Stokes-flow region and in terms of integral
transforms in the Brinkman medium. Attention is focused on the approach to the
asymptotic limit as the ratio of Newtonian- to Darcy-drag forces vanishes. From
the leading-order asymptotic approximations, implicit recursion relations are derived
to determine the coefficients in the series solutions such that those solutions exactly
satisfy the boundary and interfacial conditions as well as the continuity equations
in both the Stokes-flow and Brinkman regions. For each of the three flow regimes
considered, results are presented in terms of the drag force on the sphere and torque
about the sphere centre as a function of the dimensionless separation distance between
the sphere and the interfacial plane for several small values of the dimensionless
hydraulic permeability of the Brinkman medium. Finally, the free motion of a
neutrally buoyant sphere is found by requiring that the net hydrodynamic drag force
and torque acting on the sphere vanish. Results for this case are presented in terms
of the dimensionless translational and rotational speeds of the sphere as a function
of the dimensionless separation distance for several small values of the dimensionless
hydraulic permeability. The work is motivated by its potential application as an
analytical tool in the study of near-wall microfluidics in the vicinity of the glycocalyx
surface layer on vascular endothelium and in microelectromechanical systems devices
where charged macromolecules may become adsorbed to microchannel walls.

1. Introduction
Numerous studies have been undertaken over the years into the hydrodynamic

interactions that arise in a Stokes flow between a rigid solid of revolution and
another object, such as a plane of infinite extent. One of the earliest of such studies
(Jeffery 1915) employed bispherical coordinates to solve the symmetrical problem
of solids of revolution that are rotating about an axis perpendicular to a plane
boundary. Stimson & Jeffery (1926) determined, using bispherical coordinates, the
motion of a viscous fluid that is caused by two spheres, of equal or unequal size,
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translating at a constant relative speed along the axis passing through the centres
of both spheres. The problem of a Stokes flow induced by the motion of a sphere
near a smooth plane under (a) pure rotation without translation, and (b) uniform
translation without rotation, has been solved exactly in terms of series solutions by
Dean & O’Neill (1963)† and O’Neill (1964), respectively. Their analyses also used
a bispherical coordinate system, which, when combined with a decomposition of
the velocity field, led to closed-form infinite series solutions for the velocity and
pressure fields. Using these solutions, the net hydrodynamic drag force on the sphere
and the net torque about the sphere centre were obtained analytically in terms of
series expansions from direct surface integrations of the velocity field. Since the
governing differential equations and boundary conditions are linear, the solutions
to these two cases, together with the solution to the problem of a uniform shear
flow around a stationary sphere near a plane wall (Goldman 1966; Goren & O’Neill
1971), can be linearly superposed to provide the solution to the more complicated
problem of a translating, rotating sphere parallel to a plane wall in a uniform
shear flow. For neutrally buoyant spheres, the net hydrodynamic force and torque
about the sphere centre must vanish. Goldman, Cox & Brenner (1967b) followed
this approach to obtain the translational and rotational speeds of the sphere as
a function of the dimensionless separation distance between the sphere and the
plane.

The hydrodynamic interaction with bodies of revolution that are in the presence
of a permeable medium has also been given considerable attention over the years
(Brinkman 1947; Kim & Russel 1985; O’Neill & Bhatt 1991; Davis & Stone 1993;
Solomentsev & Anderson 1996; Feng, Ganatos, & Weinbaum 1998a, b; Broday 2002).
In most of these studies, the porous medium was modelled using the Brinkman
equation (Brinkman 1947), which has been shown on theoretical grounds to be
relevant when a viscous fluid flows through a cloud of spherical particles or through
random arrays of spheres or parallel circular posts (Tam 1969; Lundgren 1972;
Howells 1974). The Brinkman equation is applicable in this context when the particles
collectively occupy negligible volume and are each small relative to length scales that
are characteristic of the flow (Brinkman 1947; Tam 1969; Saffman 1971; Lundgren
1972; Howells 1974). In such flows, the Newtonian viscous drag forces, arising from
velocity gradients in the flow, and Darcy drag forces, arising from permeation-
induced viscous drag of flow through the particles, together balance the pressure
gradient. Typically, the Darcy drag forces dominate except near solid boundaries
and fluid interfaces where Newtonian viscous forces become important (Hou et al.
1989).

A straightforward generalization of the Brinkman medium, to a rigid porous
material having a non-vanishing solid volume fraction, can be achieved using
continuum mechanics of heterogeneous materials for binary mixtures (Truesdell &
Toupin 1960). The conservation equations and interfacial velocity and stress conditions
arising from the mixture theory are similar in form to those that arise for a Brinkman
medium (Truesdell & Toupin 1960; Saffman 1971; Hou et al. 1989); however two
additional parameters appear: the solid volume fraction, φs , and viscosity, µf , of the
fluid constituent in the porous medium. The difficulty inherent in this more general
approach emerges when a quantitative estimate of µf is needed, as this quantity is

† Although the results of Dean & O’Neill (1963) contained a computational error, their analysis
has since been found to be correct (Goldman, Cox & Brenner 1967a). Our analysis corroborates
this finding.
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not simply equivalent to the viscosity of the fluid constituent when separated from
the porous medium. It is only in the limit of a vanishing solid volume fraction, i.e.
as φs → 0, that the viscosities of the fluid constituent inside and outside the porous
medium converge (Truesdell & Toupin 1960).

In the present study, we solve the problem of a sphere in a Stokes flow translating
parallel to the bounding plane of a Brinkman half-space and rotating about an
axis that is parallel to that plane and perpendicular to the direction of translation.
Exact solutions, which satisfy the governing momentum equations for the velocity
field and Laplace’s equation for the pressure, are obtained in the Stokes-flow
region above the plane in terms of infinite series expansions involving Legendre
polynomials and associated Legendre polynomials, and in the Brinkman medium
below the plane in terms of generalized integer-order Hankel (or Fourier–Bessel)
transform integrals. Continuity of the velocity and stress-traction vectors across
the interfacial plane separating the Stokes-flow and Brinkman regions is imposed,
together with the no-slip boundary condition on the sphere surface, for each of
three flow regimes. Attention is focused on the approach to the asymptotic limit as
the ratio of Darcy- to Newtonian-drag forces vanishes. This asymptotic parameter,
which we refer to as the dimensionless hydraulic permeability of the Brinkman
medium, in essence characterizes the ratio of viscous drag forces associated with
fluid-velocity gradients in the Brinkman medium to permeation-induced viscous drag
forces associated with fluid motion relative to the solid constituent of the Brinkman
medium. From the leading-order asymptotic approximation of the integral-transform
solutions, implicit recursion relations are derived to determine the coefficients in
the series solutions such that those solutions exactly satisfy the boundary and
interfacial conditions as well as the continuity equations in both the Stokes-flow and
Brinkman regions. The significant solution that is obtained, therefore, exactly satisfies
the momentum equations associated with the Stokes-flow region, asymptotically
satisfies the momentum equations associated with the Brinkman medium, and exactly
satisfies Laplace’s equation for the pressure everywhere. Solutions are obtained for
the following three flow regimes: (a) a Stokes flow of an otherwise quiescent fluid
that is induced by the uniform translation of a sphere through the fluid with the
sphere centre maintained at a constant distance, d , from the bounding plane of a
Brinkman half-space; (b) a Stokes flow of an otherwise quiescent fluid that is induced
by the pure rotation of a sphere in that fluid about an axis parallel to the bounding
plane of a Brinkman half-space and at a distance d from that plane; and (c) a
Stokes flow around a stationary sphere with its centre located a distance d from
the bounding plane of a Brinkman half-space where the far-field flow is a uniform
shear field having a velocity that increases linearly with increasing distance from the
plane into the Stokes-flow region. Finally, a particular linear superposition of these
three solutions is obtained to find the free motion of a neutrally buoyant sphere in a
uniform shear field where the sphere centre translates parallel to and at a distance d

from the bounding plane of a Brinkman half-space.
A primary motivation for this work is its potential application to blood flow in

the microcirculation and, in particular, to a dilute, macromolecular, carbohydrate-
rich surface layer on the vascular endothelium known as the glycocalyx. Recent
studies in capillaries and venules estimate the thickness of the glycocalyx in vivo to
be ∼ 0.3−0.5 µm (Vink & Duling 1996; Smith et al. 2003). Based on results of the
analysis presented here, microfluidic studies near the vessel wall using high-resolution
intravital fluorescent micro-particle image velocimetry in post-capillary venules have
revealed nearly complete retardation of plasma flow through the glycocalyx and
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provide the first direct evidence for a hydrodynamically relevant surface layer on
vascular endothelium (Smith et al. 2003).

2. General formulation
For a Stokes flow of a fluid having constant viscosity, µ, adjacent to a slow steady

divergent-free flow in a Brinkman half-space also having constant viscosity, µ, and
constant hydraulic resistivity, K , the mass and momentum conservation equations are
given by

−µ∇ × ∇ × ṽ∗ = ∇p̃∗, ∇ · ṽ∗ = 0, (2.1)

−µ∇ × ∇ × v∗ − Kv∗ = ∇p∗, ∇ · v∗ = 0, (2.2)

where ṽ∗ and v∗ are the dimensional fluid velocity vectors and p̃∗ and p∗ denote
the dimensional pressure fields, in the Stokes-flow and Brinkman regions, respectively
(variables that carry a tilde are associated with the Stokes-flow region). Taking the
divergence of the momentum equations and using the fact that both velocity fields
are solenoidal, it follows that ∇ · ∇p̃∗ = ∇2p̃∗ = 0 and ∇ · ∇p∗ = ∇2p∗ = 0 throughout
their respective fields.

3. Brinkman equations in cylindrical coordinates
We consider adjacent Stokes-flow and Brinkman half-spaces that share a common

planar interface, denoted by P , at z∗ = 0 in Cartesian coordinates (x∗, y∗, z∗) where
the fluid velocity vector in the Brinkman medium is given by v∗ = v∗

xex + v∗
yey + v∗

z ez.
In cylindrical coordinates (r∗, θ, z∗), where x∗ = r∗ cos θ , y∗ = r∗ sin θ , and v∗ =
v∗

r er + v∗
θ eθ + v∗

z ez, the governing conservation equations in the Brinkman medium,
given by (2.2), take the form

∇2v∗
r − v∗

r

r∗2
− 2

r∗2

∂v∗
θ

∂θ
− K

µ
v∗

r =
1

µ

∂p∗

∂r∗ , (3.1)

∇2v∗
θ − v∗

θ

r∗2
+

2

r∗2

∂v∗
r

∂θ
− K

µ
v∗

θ =
1

µ r∗
∂p∗

∂θ
, (3.2)

∇2v∗
z − K

µ
v∗

z =
1

µ

∂p∗

∂z∗ , (3.3)

∂v∗
r

∂r∗ +
v∗

r

r∗ +
1

r∗
∂v∗

θ

∂θ
+

∂v∗
z

∂z∗ =0 (3.4)

where the scalar Laplacian is defined as

∇2 =
∂2

∂r∗2
+

1

r∗
∂

∂r∗ +
1

r∗2

∂2

∂θ2
+

∂2

∂z∗2
.

Following the approach of Dean & O’Neill (1963), we note that, in cylindrical
coordinates, the θ-dependence can be eliminated from the problem and a useful
decoupling occurs if p∗ and the cylindrical components of v∗ are written as

p∗ =
µV

c
Q(r, z) cos θ, v∗

r = 1
2
V (rQ(r, z) + U0(r, z) + U2(r, z)) cos θ, (3.5)

v∗
θ = 1

2
V (U2(r, z) − U0(r, z)) sin θ, v∗

z = 1
2
V (zQ(r, z) + 2w(r, z)) cos θ, (3.6)
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Figure 1. Schematic depicting the fluid velocity profile arising from the translational and
rotational motion of a sphere in a Stokes flow adjacent to a Brinkman half-space.

where V is a characteristic velocity, r = r∗/c, and z = z∗/c. For a sphere of radius a in
the Stokes-flow region, the characteristic length scale c = (d2 − a2)1/2, where d is the
distance between the sphere centre and interfacial plane, P (see figure 1). It is con-
venient to choose c as our characteristic length scale since this will render the
transformation that we will introduce below, between dimensionless cylindrical
coordinates and bispherical coordinates, free of parameters. This, in turn, will simplify
the form of many expressions we will derive that will use the bispherical coordinate
system.

When (3.5) and (3.6) are substituted into the conservation equations, the fully
three-dimensional problem reduces to one that is dependent only on the variables r

and z. In particular, (3.1)–(3.4) and Laplace’s equation for the pressure are satisfied if

L2
1 Q =0, L2

1 w − ε−2
(
w + 1

2
zQ

)
=0, (3.7)

L2
0 U0 − ε−2

(
U0 + 1

2
rQ

)
= 0, L2

2 U2 − ε−2
(
U2 + 1

2
rQ

)
= 0, (3.8)(

3 + r
∂

∂r
+ z

∂

∂z

)
Q +

∂U0

∂r
+

(
∂

∂r
+

2

r

)
U2 + 2

∂w

∂z
= 0, (3.9)

where

L2
m =

∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+

∂2

∂z2
.

In (3.7) and (3.8), ε2 = µ/(Kc2) is the dimensionless hydraulic permeability of the
Brinkman medium. Based on simple dimensional arguments, one can show from (2.2)
that ε2 = µV c−2/(KV ), which characterizes the ratio of viscous drag forces associated
with fluid-velocity gradients in the Brinkman medium to permeation-induced viscous
drag forces associated with fluid motion relative to the solid constituent of the
Brinkman medium. Note that in the limit as ε → 0, the interfacial plane, P , becomes
an impermeable boundary. The cylindrical-coordinate representation of the equations
associated with the Stokes-flow region are given by (3.1)–(3.9) when K and ε−2 vanish,
and tildes are added to all dependent variables.

4. Stokes equations in bispherical coordinates
Due to the presence of the sphere in the Stokes-flow region, cylindrical coordinates

are not an ideal choice. On the other hand, since the interfacial plane, P , is a
degenerate sphere in the limit of infinite radius of curvature, it is convenient to
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express the cylindrical components of the velocity field in the Stokes-flow region in
bispherical coordinates (η, ξ ), which are related to r and z according to

r =
sin η

cosh ξ − cos η
, z =

sinh ξ

cosh ξ − cos η
(0 � η � π, 0 � ξ � α). (4.1)

The coordinate surface ξ = α > 0 corresponds to the locus of points that lie on the
sphere surface, S, while the coordinate surface ξ = z = 0 corresponds to the locus
of points that lie on the interfacial plane, P , which is the only coordinate surface
that the cylindrical and bispherical coordinate systems share. Using the chain rule to
express r- and z-derivatives and the differential operator L2

m in terms of the bispherical
coordinates, η and ξ , the Stokes equations are satisfied if

L2
1 Q̃= L2

1 w̃ = L2
0 Ũ 0 = L2

2 Ũ 2 = 0 (4.2)

and

3Q̃+ 2cosec η (cosh ξ − cos η) Ũ 2 − cos η sinh ξ
∂Q̃

∂ξ
− sin η cosh ξ

∂Q̃

∂η

− (1 − cos η cosh ξ )

(
∂Ũ 0

∂η
+

∂Ũ 2

∂η
− 2

∂w̃

∂ξ

)
− sin η sinh ξ

(
∂Ũ 0

∂ξ
+

∂Ũ 2

∂ξ
+ 2

∂w̃

∂η

)
= 0,

(4.3)

where

L2
m =

∂2

∂η2
+

∂2

∂ξ 2
+

1 − cos η cosh ξ

sin η (cos η − cosh ξ )

∂

∂η
+

sinh ξ

cos η − cosh ξ

∂

∂ξ
− m2

sin2 η
. (4.4)

For the case of pure translation of a sphere through an otherwise quiescent fluid, the
characteristic velocity is taken to be V = U , the sphere translational speed, whereas
for pure rotation of a sphere through an otherwise quiescent fluid, V = c Ω , where
Ω is the sphere rotational speed. For the case of a stationary sphere in an otherwise
uniform shear field within the Stokes-flow region, the characteristic velocity is taken
to be V = cγ̇ , where γ̇ characterizes the strength of the shear field.

Whereas in the case of the purely translating or purely rotating sphere, the fluid
velocity decays to zero in the far field, in the case of the stationary sphere, the far-field
solution in the Stokes-flow region is given by

ṽ(x → ∞) = cγ̇ (z + ε)ex, ∀z � 0

and in cylindrical coordinates by

ṽ(r → ∞, θ, z) = cγ̇ (z + ε)(cos θ er − sin θ eθ ), ∀z � 0. (4.5)

In the far field of the Brinkman medium, the velocity decays exponentially in
magnitude according to cγ̇ ε ez/ε , ∀z � 0, where cγ̇ ε is the magnitude of the far-
field slip velocity on the interfacial plane, P . This result is consistent with the slip
velocity given in the classic works of Beavers & Joseph (1967) and Taylor (1971) at
the interface between a porous medium and a Newtonian fluid subjected to a linear
shear field. Adding the far-field solution given by (4.5) to the velocity field given
by (3.5) and (3.6), the radial and azimuthal velocity components for the case of a
stationary sphere are given by

ṽ∗
r = 1

2
cγ̇ (rQ̃(r, z) + Ũ 0(r, z) + Ũ 2(r, z) + 2 (z + ε)) cos θ, (4.6)

ṽ∗
θ = 1

2
cγ̇ (Ũ 2(r, z) − Ũ 0(r, z) − 2 (z + ε)) sin θ. (4.7)
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Since adding to ṽ∗
r / cos θ and subtracting from ṽ∗

θ/ sin θ the same affine function of
z does not change the left-hand sides of (3.1) or (3.2) when K = 0, the differential
equations governing Q̃, w̃, Ũ 0, and Ũ 2, for the case of a stationary sphere in an
otherwise uniform shear field within the Stokes-flow region, are still given by (4.2)–
(4.4).

5. Exact solution of the governing equations
Below we provide general forms of the exact solutions to (3.7), (3.8), and (4.2) and

the conditions under which those solutions can be made to satisfy the continuity
equations given by (3.9) and (4.3).

5.1. Solution in the Brinkman region

The exact solution to (3.7) and (3.8) can be expressed in terms of generalized Hankel
integral transforms. From the solution to Q, one finds that the complementary and
particular solutions for w, U0, and U2 are given on r � 0 and z � 0, to within the
arbitrary functions A(s), C(s), E(s), and G(s), by

w(r, z) = − 1
2
zQ − ε2 ∂Q

∂z
+

∫ ∞

0

ε A(s) exp
(
(s2 + ε−2)1/2z

)
J1(sr) s ds, (5.1)

U0(r, z) = − 1
2
rQ − ε2

(
∂Q

∂r
+

Q

r

)
+

∫ ∞

0

ε E(s) exp
(
(s2 + ε−2)1/2z

)
J0(sr) s ds, (5.2)

U2(r, z) = − 1
2
rQ − ε2

(
∂Q

∂r
− Q

r

)
+

∫ ∞

0

ε G(s) exp
(
(s2 + ε−2)1/2z

)
J2(sr) s ds, (5.3)

where

Q(r, z) =

∫ ∞

0

ε C(s) eszJ1(sr) s ds (5.4)

and J0, J1, and J2 are, respectively, the zeroth-, first-, and second-order Bessel functions
of the first kind. Note that e−sz, corresponding to the second linearly independent
complementary solution associated with Q, and exp(−(s2 + ε−2)1/2z), corresponding
to the second linearly independent complementary solution associated with w, U0, and
U2, grow without bound in the Brinkman half-space, since z � 0, and are therefore
not admissible.

Substituting (5.1)–(5.4) into the continuity equation, given by (3.9), and using the
recursion relations for the Bessel functions, one obtains a solenoidal velocity field
throughout the Brinkman medium if

2(s2 + ε−2)1/2A(s) − s(E(s) − G(s)) = 0. (5.5)

With A(s) determined from (5.5), only C(s), E(s), and G(s) remain to be determined
in order to fully specify the solution in the Brinkman medium.

5.2. Solution in the Stokes-flow region

Series solutions provided by Dean & O’Neill (1963) that exactly satisfy (4.2) are given
by

Q̃(η, ξ ) = sin η(cosh ξ − ν)1/2

∞∑
n=1

(
cn cosh

(
n+ 1

2

)
ξ + dn sinh

(
n+ 1

2

)
ξ
)
P ′

n(ν), (5.6)
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w̃(η, ξ ) = sin η(cosh ξ − ν)1/2

∞∑
n=1

(
an cosh

(
n+ 1

2

)
ξ + bn sinh

(
n+ 1

2

)
ξ
)
P ′

n(ν), (5.7)

Ũ 0(η, ξ ) = (cosh ξ − ν)1/2

∞∑
n=0

(
en cosh

(
n+ 1

2

)
ξ + fn sinh

(
n+ 1

2

)
ξ
)
Pn(ν), (5.8)

Ũ 2(η, ξ ) = sin2 η(cosh ξ − ν)1/2

∞∑
n=2

(
gn cosh

(
n+ 1

2

)
ξ + hn sinh

(
n+ 1

2

)
ξ
)
P ′′

n (ν), (5.9)

where Pn are the Legendre polynomials of the first kind, ν = cos η, and the primes
denote differentiation with respect to ν.

Substituting this solution into the continuity equation, given by (4.3), and using the
recursion relations for the Legendre polynomials, one obtains a solenoidal velocity
field throughout the Stokes-flow region if

5
2
dn − 1

2
((n − 1)dn−1 − (n+ 2)dn+1) − 1

2
(fn−1 − 2fn + fn+1)

+ 1
2
((n − 2)(n − 1)hn−1 − 2(n − 1)(n+ 2)hn +(n+ 2)(n+ 3)hn+1)

− (n − 1)an−1 + (2n+ 1)an − (n+ 2)an+1 = 0, n = 1, 2, . . . (5.10)

and

5
2
cn − 1

2
((n − 1)cn−1 − (n+ 2)cn+1) − 1

2
(en−1 − 2en + en+1)

+ 1
2
((n − 2)(n − 1)gn−1 − 2(n − 1)(n+ 2)gn +(n+ 2)(n+ 3)gn+1)

− (n − 1)bn−1 + (2n+ 1)bn − (n+ 2)bn+1 = 0, n= 1, 2, . . . . (5.11)

6. Boundary conditions on the sphere
The boundary conditions on the sphere surface for the three elemental problems

we will consider are written in bispherical coordinates below in terms of the variables
Q̃, w̃, Ũ 0, and Ũ 2. A linear superposition of the solutions to these three problems
will subsequently be obtained for the particular case of the free motion of a neutrally
buoyant sphere in a uniform shear field.

6.1. Pure translation

For pure steady translation of a sphere parallel to the plane, P , with linear velocity
U ex in the positive x-direction, the no-slip boundary condition on the sphere surface,
S, is given by

ṽ(x) = U ex, ∀x ∈ S. (6.1)

In cylindrical coordinates this boundary condition takes the form

ṽ(r, θ, z) =U (cos θ er − sin θ eθ ), ∀(r, θ, z) ∈ S. (6.2)

Using (3.5) and (3.6) in the left-hand side, we find that (6.2) is satisfied if

Ũ 0(r, z) − 2 = Ũ 2(r, z) = − 1
2
rQ̃(r, z), rw̃(r, z) = zŨ 2(r, z), ∀(r, z) ∈ S. (6.3)

In bispherical coordinates, where the sphere surface, S, corresponds to the coordinate
surface ξ = α, these conditions are given by

Ũ 0(η, α) − 2 = Ũ 2(η, α) = − Q̃(η, α) sin η

2(coshα − cos η)
, sin η w̃(η, α)= sinhα Ũ 2(η, α). (6.4)
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Making use of the recursion relations for the Legendre polynomials, three recursion
relations for this boundary condition can be obtained by substituting the series
solutions given by (5.6)–(5.9) into (6.4). The recursion relations derived from these
conditions are given in Appendix A, § A.1.

6.2. Pure rotation

For pure steady rotation of a sphere about an axis parallel to the plane, P , with
angular velocity Ω ey in the positive y-direction, the no-slip boundary condition on
the sphere surface, S, is given by

ṽ(x) = Ω ey × r s, ∀x ∈ S, (6.5)

where rs is the position vector originating from the sphere centre to any point on
the sphere surface. In Cartesian and cylindrical coordinates, this boundary condition
takes the form

ṽ(x, y, z) = c Ω((z − d/c) ex − xez), ∀(x, y, z) ∈ S,

ṽ(r, θ, z) = c Ω((z − d/c)(cos θ er − sin θ eθ ) − r cos θ ez), ∀(r, θ, z) ∈ S, (6.6)

where d is the distance from the plane to the centre of the sphere located at x = d ez.
Using (3.5) and (3.6) in the left-hand side, we find that (6.6) is satisfied if

Ũ 0(r, z) − 2(z − d/c) = Ũ 2(r, z) = − 1
2
rQ̃(r, z), ∀(r, z) ∈ S, (6.7)

r(w̃(r, z) + r) = zŨ 2(r, z), ∀(r, z) ∈ S. (6.8)

In bispherical coordinates, where the sphere surface, S, corresponds to the coordinate
surface ξ = α, these conditions are given by

Ũ 0(η, α) − 2 sinhα

coshα − cos η
+ 2 coth α = Ũ 2(η, α) = − Q̃(η, α) sin η

2(coshα − cos η)
, (6.9)

sin η w̃(η, α) +
sin2 η

coshα − cos η
= sinhα Ũ 2(η, α), (6.10)

where we have made use of the geometric relationship d/c = cothα (Dean & O’Neill
1963). The recursion relations derived from these conditions are given in Appendix A,
§ A.2.

6.3. Uniform shear

For a stationary sphere near the plane, P , in a velocity field that varies linearly with
z in the far field according to (4.5), the no-slip boundary condition on the sphere
surface, S, is given by ṽ(x) = 0, ∀x ∈ S. From (4.6), (4.7), and the second of (3.6), we
find that this condition is satisfied if

Ũ 0(r, z) + 2 (z + b) = Ũ 2(r, z) = − 1
2
rQ̃(r, z), rw̃(r, z) = zŨ 2(r, z), ∀(r, z) ∈ S. (6.11)

In bispherical coordinates, where the sphere surface, S, corresponds to the coordinate
surface ξ = α, these conditions are given by

Ũ 0(η, α) +
2 sinhα

coshα − cos η
+2 ε = Ũ 2(η, α) = − Q̃(η, α) sin η

2(coshα − cos η)
, (6.12)

sin η w̃(η, α) = sinh α Ũ 2(η, α). (6.13)

The recursion relations derived from these conditions are given in Appendix A, § A.3.
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7. Interfacial velocity and stress conditions
We require that the velocity vector and Cauchy stress tensor be continuous across

the interfacial plane, P , separating the Stokes-flow region and Brinkman half-space.
In particular, if the stress traction vector acting on a plane perpendicular to a unit
vector, n, is given by σ · n, where σ is the Cauchy stress tensor, then the interfacial
velocity and stress conditions are given by

v(x) = ṽ(x), σ (x) · n = −σ̃ (x) · ñ, ∀x ∈ P, (7.1)

where n = ez and ñ = −ez are, respectively, the outward-facing normals to the
Brinkman and Stokes-flow regions on P . The second of (7.1) indicates that the
stress-traction vectors associated with the Stokes-flow and Brinkman regions acting
at any point on P are equal in magnitude and direction but of opposite sense. These
interfacial conditions are consistent with those used by Davis & Stone (1993) at the
interface between two Brinkman media as well as with those derived by Hou et al.
(1989) at the interface between a binary mixture and a homogeneous fluid in the limit
as the fluid volume fraction approaches unity. Broday (2002) used similar conditions
at the interface between two Brinkman media but required that the normal velocities
vanish at the interface. Such a restriction, however, is not necessary and is technically
justified only in the limit as ε → 0.

In terms of scalar components, the interfacial conditions given by (7.1) are

v∗
r = ṽ∗

r , v∗
θ = ṽ∗

θ , v∗
z = ṽ∗

z, ∀(r, θ ) ∈ z = 0, (7.2)

−p∗ +2µ
∂v∗

z

∂z∗ = −p̃∗ + 2 µ
∂ṽ∗

z

∂z∗ , ∀(r, θ ) ∈ z =0, (7.3)

∂v∗
r

∂z∗ +
∂v∗

z

∂r∗ =
∂ṽ∗

r

∂z∗ +
∂ṽ∗

z

∂r∗ ,
∂v∗

θ

∂z∗ +
1

r∗
∂v∗

z

∂θ
=

∂ṽ∗
θ

∂z∗ +
1

r∗
∂ṽ∗

z

∂θ
, ∀(r, θ ) ∈ z = 0. (7.4)

Since the three velocity components are continuous across P , all r- and θ-derivatives
of the velocity components must also be continuous across P . Thus the interfacial
conditions on the two deviatoric stress components given by (7.4) reduce to

∂v∗
r

∂z∗

∣∣∣∣
z∗=0

=
∂ṽ∗

r

∂z∗

∣∣∣∣
z∗=0

,
∂v∗

θ

∂z∗

∣∣∣∣
z∗=0

=
∂ṽ∗

θ

∂z∗

∣∣∣∣
z∗=0

. (7.5)

Evaluating the continuity equation given by (3.4) on each side of P , and imposing
the continuity in the velocity components across P , it is evident that

∂v∗
z

∂z∗

∣∣∣∣
z∗=0

=
∂ṽ∗

z

∂z∗

∣∣∣∣
z∗=0

, (7.6)

which implies that the pressure is continuous across P in accordance with the
condition on the normal Cauchy stress component given by (7.3). Taking the sum
of and difference between v∗

r / cos θ and v∗
θ / sin θ , and likewise for the two deviatoric

stress components, and using the continuity of the pressure across P , the six interfacial
velocity and stress conditions given by (7.2)–(7.4) are satisfied if

Q = Q̃, w = w̃, ∀(r, θ ) ∈ z = 0, (7.7)

U0 = Ũ 0, U2 = Ũ 2, ∀(r, θ ) ∈ z = 0, (7.8)

r

2

∂Q

∂z
+

∂U0

∂z
=

r

2

∂Q̃

∂z
+

∂Ũ 0

∂z
,

r

2

∂Q

∂z
+

∂U2

∂z
=

r

2

∂Q̃

∂z
+

∂Ũ 2

∂z
, ∀(r, θ ) ∈ z = 0. (7.9)



Motion of a sphere in a Stokes flow parallel to a Brinkman half-space 85

8. Asymptotic approximation of the Brinkman solution
Although the exact integral forms of the complementary and particular solutions

to (3.7) and (3.8) are given by (5.1)–(5.3), the fact that A(s), E(s), and G(s) appear
in the complementary solutions multiplied by an s-dependent exponential confounds
any attempt at obtaining analytical recursion relations for the series coefficients that
identically satisfy the six interfacial velocity and stress conditions derived above. On
the other hand, such relations can be obtained if one considers the asymptotic limit
of the complementary solutions associated with (5.1)–(5.3) as ε → 0. As this limit is
relevant to a variety of problems to which this analysis might apply, we shall proceed
by seeking the asymptotic solution that is formally correct in the limit as ε → 0.

8.1. Series expansions of the complementary solutions for small ε

Expanding the complementary solution associated with w, U0, and U2, given, res-
pectively, by the last term on each of the right-hand sides of (5.1)–(5.3), in powers of
ε provides

w(r, z) ∼ − 1
2
zQ − ε2 ∂Q

∂z
+ ez/ε

∫ ∞

0

εA(s) exp[((εs)2/2 − (εs)4/8 + · · ·)z/ε]J1(sr) s ds,

(8.1)

U0(r, z) ∼ − 1
2
rQ − ε2

(
∂Q

∂r
+

Q

r

)

+ ez/ε

∫ ∞

0

εE(s) exp[((εs)2/2 − (εs)4/8 + · · ·)z/ε]J0(sr) s ds, (8.2)

U2(r, z) ∼ − 1
2
rQ − ε2

(
∂Q

∂r
− Q

r

)

+ ez/ε

∫ ∞

0

εG(s) exp[((εs)2/2 − (εs)4/8 + · · ·)z/ε]J2(sr) s ds, (8.3)

where Q is given by (5.4), which exactly satisfies the first of (3.7). If in each integral
the functions A(s), E(s), and G(s) decay rapidly over the width of the Gaussian
factor, exp(εs2z/2), then the Gaussian term and all higher-order terms in ε within
each integral can be replaced with unity to good approximation. We shall assume this
to be true in what follows, and verify it for consistency with the solution we obtain
later.

The lowest-order asymptotic solution that can be obtained, and which can be made
to satisfy the continuity equation in the Brinkman medium exactly, corresponds to
neglecting O(ε2) terms in each of the particular solutions associated with (8.1)–(8.3)
and retaining only the leading-order term in each of the associated complementary
solutions. In this case, it becomes convenient to define the O(1) functions† C0(r),
C1(r), and C2(r) such that

w(r, z) ∼ − 1
2
zQ + ε2 C1(r) ez/ε, (8.4)

U0(r, z) ∼ − 1
2
rQ + ε C0(r) ez/ε, U2(r, z) ∼ − 1

2
rQ + εC2(r) ez/ε. (8.5)

† Whereas Q̃(r, z), Ũ 0(r, z), and Ũ 2(r, z) are, in general, O(1) quantities, these functions are all
O(ε) when evaluated on the interfacial plane, z =0. Consistent with this asymptotic ordering, Q(r, z),
w(r, z), U0(r, z), and U2(r, z) are all O(ε).



86 E. R. Damiano, D. S. Long, F. H. El-Khatib and T. M. Stace

Substituting (8.4) and (8.5) into the continuity equation, given by (3.9), and eliminating
C1(r) we obtain

w(r, z) ∼ − 1
2
zQ − 1

2
ε2

(
C ′

0(r) + C ′
2(r) +

2 C2(r)

r

)
ez/ε. (8.6)

Substituting (8.5) and (8.6) into (3.5) and (3.6), the velocity components are given to
leading order in ε by

v∗
r ∼ 1

2
εV (C0(r) + C2(r)) ez/ε cos θ, v∗

θ ∼ 1
2
εV (C2(r) − C0(r)) ez/ε sin θ, (8.7)

v∗
z ∼ 1

2
ε2V

(
C ′

0(r) + C ′
2(r) +

2 C2(r)

r

)
ez/ε cos θ. (8.8)

A boundary layer analysis using a singular perturbation method provides the same
asymptotic solutions as those given above up to and including terms of O(ε) in v∗

r

and v∗
θ and O(ε2) in v∗

z . It is evident from the solution of a uniform shear field in
the Stokes-flow region, given by (4.5), that the magnitude of the slip velocity on the
interfacial plane is O(ε). This is consistent with the leading-order radial and azimuthal
components of the velocity field in the Brinkman region given by (8.7). It is further
evident, upon substitution of (8.7) and (8.8) into the continuity equation given by
(3.4), that the leading-order axial component of the velocity field in the Brinkman
region must be O(ε2), which is consistent with (8.8).

8.2. Imposing interfacial conditions

In order to determine the eight sets of coefficients, {an, bn, cn, dn, en−1, fn−1, gn+1, hn+1}
for n= 1, 2, . . . , and the three functions, C(s), C0(r), and C2(r), we must impose the
six interfacial velocity and stress conditions in addition to the five recursion relations
(three obtained from enforcing the no-slip condition on the sphere surface, and two
from imposing the continuity equation in the Stokes-flow region). Below we use the
six interfacial conditions to eliminate the unknown functions C(s), C0(r), and C2(r),
and derive three additional recursion relations for the coefficients.

Substituting (8.5) into (7.8) and using the first of (7.7), C0(r) and C2(r) are given in
terms of the solution in the Stokes-flow region by

C0(r) = ε−1
(

1
2
rQ̃(r, 0) + Ũ 0(r, 0)

)
, C2(r) = ε−1

(
1
2
rQ̃(r, 0) + Ũ 2(r, 0)

)
. (8.9)

Similarly, alternative expressions for C0(r) and C2(r), given by

C0(r) =

(
r

2

∂Q̃

∂z
+

∂Ũ 0

∂z

)
z=0

, C2(r) =

(
r

2

∂Q̃

∂z
+

∂Ũ 2

∂z

)
z=0

, (8.10)

can be obtained by substituting the z-derivatives of U0 and U2 from (8.5) into (7.9). By
combining (8.9) and (8.10) and eliminating C0(r) and C2(r), four of the six interfacial
conditions are satisfied if the solution in the Stokes-flow region is constrained to
satisfy

1
2
rQ̃(r, 0) + Ũ 0(r, 0) = ε

(
r

2

∂Q̃

∂z
+

∂Ũ 0

∂z

)
z=0

(8.11)

and

1
2
rQ̃(r, 0) + Ũ 2(r, 0) = ε

(
r

2

∂Q̃

∂z
+

∂Ũ 2

∂z

)
z=0

. (8.12)
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Using the expressions for C0(r) and C2(r), given by (8.9), in (8.6), the interfacial
condition relating w and w̃ given by the second of (7.7) is satisfied if

w̃(r, 0) = −ε

(
Q̃+

r

2

∂Q̃

∂r
+

1

2

(
∂Ũ 2

∂r
+

∂Ũ 0

∂r

)
+

Ũ 2

r

)
z=0

. (8.13)

In terms of bispherical coordinates, (8.11)–(8.13) take the form

sin η

2(1 − cos η)
Q̃(η, 0) + Ũ 0(η, 0) = ε

(
1
2
sin η

∂Q̃

∂ξ
+ (1 − cos η)

∂Ũ 0

∂ξ

)
ξ=0

, (8.14)

sin η

2(1 − cos η)
Q̃(η, 0) + Ũ 2(η, 0) = ε

(
1
2
sin η

∂Q̃

∂ξ
+ (1 − cos η)

∂Ũ 2

∂ξ

)
ξ=0

, (8.15)

w̃(η, 0) = −ε

(
Q̃ − 1

2
sin η

∂Q̃

∂η
− 1

2
(1 − cos η)

(
∂Ũ 2

∂η
+

∂Ũ 0

∂η
− 2Ũ 2

sin η

))
ξ=0

. (8.16)

Making use of the recursion relations for the Legendre polynomials, three recursion
relations for these interfacial constraint conditions can be obtained by substituting the
series solutions given by (5.6)–(5.9) into (8.14)–(8.16). The recursion relations derived
from these conditions are given in Appendix B.

Finally, substituting (8.9) into (8.7) and (8.8), the significant asymptotic solutions
for the velocity components in the Brinkman medium are given to leading order in ε

by

v∗
r ∼ 1

2
V (rQ̃(r, 0) + Ũ 0(r, 0) + Ũ 2(r, 0)) ez/ε cos θ, (8.17)

v∗
θ ∼ 1

2
V (Ũ 2(r, 0) − Ũ 0(r, 0)) ez/ε sin θ, (8.18)

v∗
z ∼ V w̃(r, 0) ez/ε cos θ. (8.19)

Substituting (5.4) into the first of (7.7), the solution for the pressure, which represents
an exact solution to Laplace’s equation, is given by

p∗ =
µV

c
cos θ

∫ ∞

0
1Q̃(s, 0) eszJ1(sr) s ds, (8.20)

where the order-n generalized Hankel transform of the function ϕ(r) is defined as

nϕ(s) :=

∫ ∞

0

ϕ(r) Jn(sr) r dr =⇒ ϕ(r) =

∫ ∞

0
nϕ(s) Jn(sr) s ds.

Thus, (8.17)–(8.19) asymptotically satisfy the momentum equations in the Brinkman
medium, given by (3.1)–(3.3), whereas (8.20) and the series solutions, given by (5.6)–
(5.9), exactly satisfy the momentum equations in the Stokes-flow region, given by
(4.2), and Laplace’s equation for the pressure throughout both the Brinkman and
Stokes-flow regions. By further imposing the eight recursion relations, consisting of
the two given by (5.10) and (5.11), a set of three given in Appendix A, and the
three given by (B 1)–(B 3) in Appendix B, the solution found here exactly satisfies the
continuity equations throughout both the Brinkman and Stokes-flow regions, given
respectively by (3.9) and (4.3), the no-slip boundary condition on the sphere surface,
and the six interfacial velocity and stress-traction conditions given by (7.2)–(7.4).

The assumption advanced earlier about the rate of decay of A(s), E(s), and G(s)
can now be verified. Substituting (5.6), (5.8), and (5.9) into (8.9) and using (4.1) to
express η in terms of r at z = ξ = 0, inverse generalized Hankel transforms can be
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performed on the resulting expressions for C0(r), C1(r), and C2(r) to yield the leading-
order asymptotic expressions for the functions A(s), E(s), and G(s), which are given
in Appendix C. The resulting expressions decay exponentially fast in s. In principle,
there will be some characteristic decay frequency, sc, for the quantities A(s), E(s),
and G(s), where each are of the form exp(−s/sc). If sc is smaller than the Gaussian
width 2/(εz), then the approximation made earlier (i.e. replacing the Gaussian with a
constant) is justified. In particular, this approximation is valid for ε � 2/(scz), where
it can be shown that sc is of order unity. For a given value of ε then, there exists
a boundary-layer region where this approximation is reasonable. For larger values
of |z| outside the boundary layer, the solution begins to break down. However, since
the solution in the Brinkman region decays exponentially in z, the error for large
values of |z| will be negligible if ε is sufficiently small. Based on numerical results, we
estimate that the asymptotic solution presented here is a very good approximation
throughout the Brinkman and Stokes-flow regions if ε � 0.25.

9. Drag force on the sphere and torque about the sphere centre
Using the exact series solutions, Dean & O’Neill (1963) and O’Neill (1964)

analytically determined the hydrodynamic drag force, F =(Fx, Fy, Fz), exerted on
the sphere and torque, T =(Tx, Ty, Tz), about the sphere centre, for the cases of pure
rotation and pure translation of a sphere in an otherwise quiescent fluid near a plane.
If the plane is replaced by a Brinkman half-space, one finds that the series solutions
provided by Dean & O’Neill (1963) and O’Neill (1964) for the drag force and torque
need a slight modification for T but no modification for F. Following the procedure
of Dean & O’Neill (1963) and O’Neill (1964), it can be shown that, in the presence
of a Brinkman half-space, the exact form of the series solutions for the Cartesian
components of F and T are given by

2−1/2 F i
x = 1

6
βi sinhα

∞∑
n=1

(n (n+ 1) dn + fn−1) , Fy = Fz = 0, (9.1)

for i = t, r, s where βt = 1, βr = −sinhα, and βs = −tanh α, and

21/2 T i
y = 1

4
δi sinh2 α

∞∑
n=1

(2n (n+ 1)(an + bn) − (2n+ 1)(en−1 + fn−1))

+ cothα (n (n+ 1)(cn + dn) + (en−1 + fn−1)), Tx = Tz = 0, (9.2)

for i = t, r, s where δt = 1, δr = −sinhα, and δs = −2 sinhα. In (9.1) and (9.2), the
superscripts t , r , and s correspond, respectively, to pure translation, pure rotation,
and uniform shear.

10. Free motion of a neutrally buoyant sphere
In the case of a neutrally buoyant sphere in a uniform shear flow, Ω and U cannot

be specified independently. In order to obtain the rotational and translational speeds
associated with the free motion of a neutrally buoyant sphere in a uniform shear
field, the sum of the externally applied viscous drag forces on the sphere, and the
sum of the external torques about the centre of the sphere must vanish. Goldman et
al. (1967b) showed that for a neutrally buoyant sphere translating in the x-direction
and rotating about the y-axis, these conditions can be satisfied simultaneously for Ω
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and U if we require that

Ω
1
2
γ̇

=
2(d/a)F s

x T t
y − F t

xT
s
y

F t
xT

r
y − F r

x T t
y

,
U

dγ̇
=

1
2
(a/d)F r

x T s
y − F s

x T r
y

F t
xT

r
y − F r

x T t
y

. (10.1)

In (10.1) the dimensionless force and torque components are defined relative to their
dimensional counterparts according to

F r
x =

F ∗r
x

6πµΩa2
, F t

x =
F ∗t

x

6πµUa
, F s

x =
F ∗s

x

6πµγ̇ ad
,

T r
y =

T ∗r
y

8πµΩa3
, T t

y =
T ∗t

y

8πµUa2
, T s

y =
T ∗s

y

4πµγ̇ a3
.

Thus the free motion of a neutrally buoyant sphere rotating and translating in a
uniform shear field near a Brinkman half-space is fully characterized by Ω and U

given by (10.1). Determination of these two quantities not only provides the free
motion of a neutrally buoyant sphere, but also leads to the appropriate scaling of
the dimensionless velocity and pressure fields associated with the three elemental
problems we have considered such that linear superposition of the scaled solutions
provides the velocity and pressure fields for the neutrally buoyant case as well.

11. Results
The solution for a particular point in the two-dimensional parameter space (α, ε)

for each of the three cases considered is uniquely determined by the eight sets of
coefficients, {an, bn, cn, dn, en−1, fn−1, gn+1, hn+1} for n= 1, 2, . . . . In order to make this
determination, we must first truncate the infinite series solutions for Q̃, w̃, Ũ 0, and
Ũ 2 in the Stokes-flow region and retain only the leading N terms in each series. The
8N coefficients are then found that uniquely satisfy the 8N system of linear equations
derived from the 3N recursion relations (see Appendix A) obtained from the three
no-slip boundary conditions on the sphere surface, the 2N recursion relationships
given by (5.10) and (5.11) obtained from the continuity equation in the Stokes-flow
region, and the 3N recursion relationships (see Appendix B) obtained from the three
constraint equations given by (8.14)–(8.16).

Since all of the series solutions are convergent, accuracy increased with increasing
N . As expected, in order to achieve a given accuracy, a greater number of terms in
the series solutions had to be retained for small values of α (corresponding to small
clearances between the sphere and the interfacial plane, P ) than for large values.
However, as N increased, the determinant of the 8N × 8N matrix associated with
the 8N system of linear equations decreased. Using traditional numerical methods,
the number of terms that could be retained in the series solutions was then limited
by machine precision since increasing N above a certain threshold resulted in an
ill-conditioned matrix as far as the precision of the calculations was concerned. Upon
inversion, that resulted in the accumulation of significant numerical errors in the 8N

coefficients. To obviate this limitation, all calculations were carried out using multiple
precision. Furthermore, when assembling the 8N × 8N matrix, all matrix elements
were left in symbolic form or as rational fractions whenever possible, with conversion
to their floating-point approximations being left as a final step before matrix inversion.
When computing the series solutions for all of the results presented here, we set N =45
and carried 50 digits of precision. Using these settings, the boundary conditions on
the sphere surface, the continuity equation throughout the Stokes-flow region, and
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the interfacial velocity and stress conditions were satisfied with an accuracy that
exceeded machine precision. Because of the need for multiple precision calculations
and for symbolic manipulation of the 8N system of linear equations, all computations
were performed using a symbolic algebra package (Mathematica, Wolfram Research,
Inc.) on Power Macintosh G4-based computers (Apple Computer, Inc.). With N = 45,
calculations of the 8N coefficients carrying 50 digits of precision took approximately
2 orders of magnitude longer than machine precision calculations (∼ 2 s with machine
precision versus ∼ 200 s with 50 digits of precision using a 1.25 GHz G4 processor).

It was noted, not surprisingly, that for a given point in the parameter space (α, ε),
solutions for the case of uniform shear required retention of a greater number of
terms to achieve a given accuracy than did solutions for the cases of pure translation
and pure rotation. When calculating the drag force and torque on the sphere, we
did not compute the coefficients for the case of uniform shear at each of the points
in the parameter space considered since this would have required the retention of
many more terms in the series solutions than were necessary in the other two cases if
comparable accuracy was to be obtained. Instead, all of the information required to
compute drag force and torque for the case of uniform shear is obtainable from the
coefficients associated with the other two cases by invoking a quadrature method first
conceived by Brenner (1964) and later implemented by Goldman (1966). There it was
shown, through consideration of the stress-traction vector on the sphere surface, that
for the case of uniform shear, the drag force on the sphere and the torque about the
sphere centre could be determined from the coefficients of the pure translational and
pure rotational problems, respectively. The same arguments apply to this problem,
where the sphere is in proximity to a Brinkman half-space.

Figure 2 shows the magnitudes of the dimensionless drag force (black curves,
left axis) and torque about the sphere centre (grey curves, right axis), on a purely
translating sphere (a), a purely rotating sphere (b), and a stationary sphere in a
uniform shear field (c) of radius a near a Brinkman half-space for various values of
dimensionless permeability, ε2

a = (c/a)2ε2, as a function of the dimensionless distance,
d/a, between the interface, P , and the sphere centre. Figure 3 shows the relative
translational (a) and rotational (b) speeds for the free motion of a neutrally buoyant
sphere near a Brinkman half-space in a uniform shear field, with the constant shear
rate γ̇ , as a function of d/a for various values of ε2

a . (Since c varies with d/a, so too
does the dimensionless permeability, ε2, if µ and K are constant. Therefore, ε2 varies
for constant values of µ, K , and a along all but the solid curves shown in figures 2
and 3. It is often more convenient, therefore, to show results in terms of ε2

a , the
dimensionless permeability based on sphere radius, a.) The dashed line in figures 3(a)
and 3(b) corresponds to one extreme of a sphere in an unbounded Newtonian fluid
(i.e. as K → 0, ε2

a → ∞) whereas the solid curve in each panel of figures 2 and 3
corresponds to the other extreme in which there is no flow through the layer (i.e.
as K → ∞, ε2

a → 0). In each case, these represent upper and lower bounds on the
magnitudes of the associated quantities being plotted, while the three intermediate
curves represent dimensionless permeabilities of the Brinkman medium corresponding
to ε2

a = 1.92 × 10−1, 1.92 × 10−2, and 1.92 × 10−3. These three values correspond
to dimensional hydraulic resistivity values of K = 108, 109, and 1010 dyn s cm−4,
respectively, for a viscosity µ = 0.012 dyn s cm−2 and a sphere radius a = 0.25 µm.
These particular dimensional parameters are relevant to a recent study (Smith et al.
2003) of systemically injected, neutrally buoyant, fluorescent microspheres circulating
in the plasma-rich region near the vessel wall of post-capillary venules in vivo (see
§ 12). In figures 2 and 3, the range of d/a shown corresponds to ln(3/2) � α � ln 10
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Figure 2. Variation, with respect to d/a, of the magnitudes of the dimensionless drag force
on a sphere (black curves, left axis) and torque on a sphere about its centre (grey curves, right
axis) if the sphere, having radius a and centred a distance d above a Brinkman half-space,
is (a) translating without rotation through an otherwise quiescent fluid, (b) rotating without
translation in an otherwise quiescent fluid, or (c) fixed in a uniform shear field. All cases are
shown for the same three values of the dimensionless permeability, ε2

a , and for a vanishing
permeability (solid curves) when the Brinkman medium is replaced by a plane of infinite
extent.

(0.41 � α � 2.3). This range corresponds to a dimensionless minimal clearance between
the sphere and the interfacial plane, P , of 0.08 � (d/a) − 1 � 4.05, which, in terms
of the dimensional parameters referenced above, corresponds to a minimal clearance
range of 0.02 � d − a � 1.01 µm.
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Figure 3. Variation, with respect to d/a, of the relative (a) translational speed, U/(dγ̇ ), and
(b) rotational speed, 2Ω/γ̇ , for the free motion of a neutrally buoyant sphere, of radius a, in
a uniform shear field centred a distance d above a Brinkman half-space, for the same three
values of ε2

a shown in figure 2. The curves in (a) represent the transformation between the
translational speed of a sphere centred a distance d above the interface and the translational
speed, dγ̇ , a fluid particle would have, located a distance d above the interface, in a uniform
shear field in the absence of the sphere. The curves in (b) represent the transformation between
the rotational speed of that sphere and the constant solid-body rotation, γ̇ /2, a fluid particle
would have in a uniform shear field in the absence of the sphere.

Figure 4 shows the dimensionless radial velocity profiles in the (x, z)-plane at y = 0
under the ‘south pole’ of a purely translating sphere (a), a purely rotating sphere (b),
a stationary sphere in a uniform shear flow (c), and a neutrally buoyant sphere in a
uniform shear flow (d) near a Brinkman half-space, as a function of the dimensionless
distance, z∗/a, below the sphere for the same three non-vanishing values of ε2

a shown
in figures 2 and 3. The interfacial plane, P , between the Brinkman (shaded) and
Stokes-flow (unshaded) regions is located at z = 0. Figure 5 shows the dimensionless
pressure distribution, Q, in the (x, z)-plane at y = 0 along the interfacial plane, P ,
and at four equally spaced depths below P arising from a Stokes flow generated by
the motion of a neutrally buoyant sphere in a uniform shear field above a Brinkman
half-space having a dimensionless permeability corresponding to ε2

a = 1.92 × 10−3. All
calculations in figures 4 and 5 were performed for a minimal clearance of ∼ 1.032 a

(α = ln(3.8) ≈ 1.335).
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Figure 4. Dimensionless radial velocity profiles under the south pole of (a) a purely translating
sphere, (b) a purely rotating sphere, (c) a stationary sphere in a uniform shear flow, and (d) a
neutrally buoyant sphere in free motion in a uniform shear field near a Brinkman half-space
for the same three non-zero values of ε2

a shown in figure 2. Note, abscissa ranges vary.
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Figure 5. Dimensionless pressure variations at y = 0 along the interfacial plane, P (solid
curve), and along four equally spaced (x, y)-planes below P arising from a Stokes flow
generated by the free motion of a neutrally buoyant sphere in a uniform shear field above a
Brinkman half-space. The dimensionless permeability corresponds to ε2

a = 1.92 × 10−3 and the
minimal clearance between the sphere and the interfacial plane is as in figure 4.
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12. Application to near-wall microfluidics in post-capillary venules
A major motivation for this work has been to determine the influence of a nearby

porous permeable medium on the free motion of a neutrally buoyant sphere in a
Stokes flow. Having made this determination, measurements of sphere motion in the
vicinity of a porous medium could provide a means for characterizing properties of
that medium. A particular application of these results is to use such measurements
to probe the extent to which the glycocalyx surface layer, expressed on the vascular
endothelium of microvessels, extends into the vessel lumen and the effect it has on
near-wall microfluidics.

The glycocalyx is an endothelial-cell surface layer consisting of membrane-bound
macromolecules that include proteoglycans, glycoproteins, glycosaminoglycans, and
perhaps adsorbed plasma proteins from the blood. The first successful attempt at
visualizing the layer in vivo was achieved through the identification of a near-wall
steric exclusion zone of fluorescently labelled macromolecular plasma tracers (Vink &
Duling 1996). In capillaries and small post-capillary venules, Duling and coworkers
have shown that 70 kDa FITC-dextran was excluded from a region ∼ 0.4−0.5 µm
in thickness adjacent to the endothelial-cell surface (Vink & Duling 1996; Henry
& Duling 1999). This dye-exclusion technique, however, has not been conclusive in
vessels larger than ∼ 12−15 µm in diameter because of problems associated with
light refraction of the fluorescent dye column near the vessel wall (Henry & Duling
1999). An alternative approach for investigating the layer in vivo has recently been
developed by Smith et al. (2003), who used near-wall fluorescent intravital micro-
particle image velocimetry (µ-PIV) to image ∼ 500 nm neutrally buoyant fluorescent
polystyrene microspheres circulating in the plasma-rich zone of post-capillary venules
in the mouse cremaster muscle. Not only were they able to obtain an estimate of
layer thickness with this approach (ranging between ∼ 0.33 and 0.44 µm), which was
comparable to the estimate derived from the dye exclusion technique, but their µ-PIV
data also provided the first direct evidence for a hydrodynamically relevant glycocalyx
surface layer in venules in vivo.

Based on the analysis presented here, Smith et al. (2003) inferred fluid-particle
speeds near the vessel wall from measured microsphere translational speeds using the
second of (10.1) (see figure 3a). Starting with an initial guess of layer thickness, a
linear regression through the predicted fluid-particle speeds was then used, together
with the analysis of Damiano et al. (1996), to converge upon estimates of layer
thickness over a range of possible values of hydraulic resistivity, K . The applicability
of the analysis presented here to near-wall microfluidics in venules depends on the
validity of certain assumptions.

First, microspheres must be sufficiently small, and the vessel diameter sufficiently
large, such that the curvature of the vessel wall can be neglected and the flow just
outside the glycocalyx can be regarded, in the absence of microspheres, as a uniform
shear field. For 500 nm microspheres in 25–40 µm-diameter venules, both of these
approximations are very accurate. The uniform-shear approximation, in particular, is
reasonable since red cells tend to shun the wall in microvessels, leading to a plasma-
rich region, of ∼ 2 to 3 µm in thickness, near the vessel wall.

Second, a uniform Brinkman medium making a discrete interface with a homo-
geneous viscous fluid must be representative, in a mean sense, of a glycocalyx
that varies axially in thickness and axially and radially in hydraulic resistivity, K .
If these quantities are represented by their mean values, then this idealization is
nevertheless quantitatively useful since it follows, from the mean-value theorem for
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integrals of continuous functions, that these quantities are bounded by the largest
and smallest values they would assume in a heterogeneous spatially non-uniform
glycocalyx. Furthermore, invoking a Brinkman medium (rather than a more general
description using something like mixture theory) as a first approximation of the
glycocalyx surface layer is likely to be reasonable when one considers the very low
solid-volume fractions the layer is thought to have (Damiano et al. 1996; Feng &
Weinbaum 2000). It is not uncommon for mucopolysaccharide structures devoid
of collagen to contain solid-volume fractions less than 1%. In such a case, the
viscosity of the fluid constituent within these structures is very nearly equal to that
of the external fluid. We therefore assume that the viscosity, µ, of the fluid in the
Brinkman-medium model is simply equal to that of the surrounding blood plasma.
Even with very low solid-volume fractions, the hydraulic resistivity, K , of the layer
can nevertheless be large enough to render the Darcy drag an important determinant
of the flow (Damiano et al. 1996). Recent analytical studies have attempted to put
bounds on K . Using an estimate of glycocalyx fixed-charge density, based on an
electrochemical model of the glycocalyx (Stace & Damiano 2001), Damiano & Stace
(2002) were able to estimate the hydraulic resistivity of the glycocalyx from their
mechano-electrochemical model of the layer to be between 1010 and 1011 dyn s cm−4.
This is consistent with an earlier estimate by Feng & Weinbaum (2000), which was
inferred from a fibre matrix model of the glycocalyx based on the Brinkman equation.

Finally, for the asymptotic approximation invoked here to be valid, we require
that εa � 1. This condition is certainly met for the values of K , µ, and a referenced
above and is reasonably well satisfied for values of K as small as 108 dyn s cm−4. The
fact that the layer itself is of finite thickness, t , whereas the analysis developed here
assumes a Brinkman half-space, does not pose a problem so long as the predicted
fluid velocity in the half-space decays sufficiently fast so as to nearly satisfy the no-slip
condition at the vessel wall. In particular, if |εa ln(0.01)| � t/a, then the fluid velocity
at z∗ = −t will be less than ∼ 1% of the slip velocity on the interfacial plane, P . For
material and geometric properties thought to be typical of the glycocalyx (Damiano
et al. 1996; Damiano & Stace 2002; Feng & Weinbaum 2000; Smith et al. 2003), and
prevailing flow conditions typical of the microcirculation, this condition is also met
(e.g. see figure 4d for values of K � 108 dyn s cm−4 assuming a glycocalyx thickness
and microsphere diameter of ∼ 0.5 µm).

Partial support for this work was contributed by the Whitaker Foundation, RG-
98-0524, and the National Science Foundation, BES-0093985.

Appendix A. Recursion relations for the no-slip boundary conditions on the
sphere, S

A.1. Pure translation

Substituting the series solutions given by (5.6)–(5.9) into (6.4), and using the recursion
relations for the Legendre polynomials, it can be shown that the no-slip boundary
condition on the sphere surface for the case of pure translation is satisfied if

κn − coth α

2n − 1
(fn−1 + (n − 2)(n − 1) hn−1) +

κn + cothα

2n+ 3
(fn+1 + (n+ 2)(n+ 3) hn+1)

− λn − 1

2n − 1
(en−1 + (n − 2)(n − 1) gn−1) +

λn + 1

2n+ 3
(en+1 + (n+ 2)(n+ 3) gn+1)

= 4µn, n= 1, 2, . . . , (A 1)
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κn − coth α

2n − 1
(dn−1 − 2(n − 2) hn−1) +

κn + coth α

2n+ 3
(dn+1 + 2(n+ 3) hn+1)

− λn − 1

2n − 1
(cn−1 − 2(n − 2) gn−1) +

λn + 1

2n+ 3
(cn+1 + 2(n+ 3) gn+1)

= 2 cothα(κngn + hn), n= 2, 3, . . . , (A 2)

λn − 1

2n − 1
an−1 − λn + 1

2n+ 3
an+1 − κn − coth α

2n − 1
bn−1 − κn + coth α

2n+ 3
bn+1

= κngn + hn, n= 2, 3, . . . , (A 3)

where κn = coth(n+ 1
2
)α, λn = κn coth α, and

µn =
2−1/2

sinhα sinh
(
n+ 1

2

)
α

(
e−(n+3/2) α

2n+ 3
− e−(n−1/2) α

2n − 1

)
.

In (A 1), we made use of the series expansion

(coshα − cos η)−1/2 = −
∞∑

n=1

2 µn sinhα sinh
(
n+ 1

2

)
α P ′

n(cos η). (A 4)

A.2. Pure rotation

Substituting (5.6)–(5.9) into (6.9) and (6.10), and using the recursion relations for the
Legendre polynomials, it can be shown that the no-slip boundary condition on the
sphere surface for the case of pure rotation is satisfied if

κn − coth α

2n − 1
(fn−1 + (n − 2)(n − 1) hn−1) +

κn + coth α

2n+ 3
(fn+1 + (n+ 2)(n+ 3) hn+1)

− λn − 1

2n − 1
(en−1 + (n − 2)(n − 1) gn−1) +

λn + 1

2n+ 3
(en+1 + (n+ 2)(n+ 3) gn+1)

= −4 coth α µn + 23/2

(
e−(n+3/2) α − e−(n−1/2) α

sinhα sinh
(
n+ 1

2

)
α

)
, n = 1, 2, . . . , (A 5)

κn − coth α

2n − 1
(dn−1 − 2(n − 2) hn−1) +

κn + coth α

2n+ 3
(dn+1 + 2(n+ 3) hn+1)

− λn − 1

2n − 1
(cn−1 − 2(n − 2) gn−1) +

λn + 1

2n+ 3
(cn+1 + 2(n+ 3) gn+1)

= 2 cothα(κngn + hn), n= 2, 3, . . . , (A 6)

λn − 1

2n − 1
an−1 − λn + 1

2n+ 3
an+1 − κn − coth α

2n − 1
bn−1 − κn + coth α

2n+ 3
bn+1

= κngn + hn + 4 µn, n = 2, 3, . . . . (A 7)

In (A 5) and (A 7), we made use of the series expansions

sinhα (coshα − cos η)−3/2 =

∞∑
n=0

21/2 (2n+ 1) e−(n+1/2) α Pn(cos η), (A 8)

(coshα − cos η)−3/2 = −
∞∑

n=2

4 µn sinhα sinh
(
n+ 1

2

)
α P ′′

n (cos η). (A 9)
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A.3. Uniform shear

Substituting (5.6)–(5.9) into (6.12) and (6.13), and using the recursion relations for the
Legendre polynomials, it can be shown that the no-slip boundary condition on the
surface of a stationary sphere in a uniform shear field is satisfied if

κn − coth α

2n − 1
(fn−1 + (n − 2)(n − 1) hn−1) +

κn + coth α

2n+ 3
(fn+1 + (n+ 2)(n+ 3) hn+1)

− λn − 1

2n − 1
(en−1 + (n − 2)(n − 1) gn−1) +

λn + 1

2n+ 3
(en+1 + (n+ 2)(n+ 3) gn+1)

= −4 ε µn − 23/2

(
e−(n+3/2) α − e−(n−1/2) α

sinhα sinh
(
n+ 1

2

)
α

)
, n= 1, 2, . . . , (A 10)

κn − coth α

2n − 1
(dn−1 − 2(n − 2) hn−1) +

κn + cothα

2n+ 3
(dn+1 + 2(n+ 3) hn+1)

− λn − 1

2n − 1
(cn−1 − 2(n − 2) gn−1) +

λn + 1

2n+ 3
(cn+1 + 2(n+ 3) gn+1)

= 2 cothα(κngn +hn), n=2, 3, . . . , (A 11)

λn − 1

2n − 1
an−1 − λn +1

2n+ 3
an+1 − κn − coth α

2n − 1
bn−1 − κn + coth α

2n+ 3
bn+1

= κngn + hn, n= 2, 3, . . . . (A 12)

In (A 10), we made use of the series expansions given by (A 4) and (A 8).

Appendix B. Recursion relations for the interfacial conditions on the plane, P
Substituting (5.6)–(5.9) into (8.14)–(8.16), and using the recursion relations for the

Legendre polynomials, it can be shown that the three interfacial constraints are
satisfied if

− (n − 1)(n − 2) cn−2

2(2n − 1)(2n − 3)
+

n(n+ 1) cn

(2n+ 3)(2n − 1)
− (n+ 3)(n+ 2) cn+2

2(2n+ 5)(2n+ 3)
− (n − 1) en−2

(2n − 1)(2n − 3)

+
en−1

2n − 1
− en

(2n+ 3)(2n − 1)
− en+1

2n+ 3
+

(n+ 2) en+2

(2n+ 5)(2n+ 3)

+ ε

(
− (n − 1)(n − 2)(n − 3) dn−3

4(2n − 1)(2n − 3)
+

(n − 1)(n − 2) dn−2

4(2n − 1)
+

n2 (n − 1) dn−1

4(2n+ 3)(2n − 3)

− n (2n+ 1)(n+ 1) dn

2(2n+ 3)(2n − 1)
+

(n+ 1)2(n+ 2) dn+1

4(2n+ 5)(2n − 1)
+

(n+ 3)(n+ 2) dn+2

4(2n+ 3)

− (n+ 4)(n+ 3)(n+ 2) dn+3

4(2n+ 5)(2n+ 3)
− (n − 1)(n − 2) fn−3

2(2n − 1)(2n − 3)
+

(n − 1) fn−2

2n − 1
− (5n2 + n − 12) fn−1

2(2n+ 3)(2n − 3)

+
(2n+ 1) fn

(2n+ 3)(2n − 1)
+

(5n2 + 9n − 8) fn+1

2(2n+ 5)(2n − 1)
− (n+ 2) fn+2

2n+ 3
+

(n+ 3)(n+ 2) fn+3

2(2n+ 5)(2n+ 3)

)
= 0,

n= 1, 2, . . . , (B 1)
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cn−1

4n − 2
− cn+1

4n+ 6
− n − 2

2n − 1
gn−1 − n+3

2n+ 3
gn+1 + ε

(
n − 2

4(2n − 1)
dn−2 − 1

4
dn−1

+
3(2n+ 1)

4(2n+ 3)(2n − 1)
dn + 1

4
dn+1 − (n+ 3)

4(2n+ 3)
dn+2 − (n − 2)(n − 3)

2(2n − 1)
hn−2 + (n − 2) hn−1

− 3(2n+ 1)(n+ 2)(n − 1)

(2n+ 3)(2n − 1)
hn +(n − 2) hn+1 − (n+ 4)(n+ 3)

2(2n+ 3)
hn+2

)
= 0,

n= 2, 3, . . . , (B 2)

−(n − 2) an−2

(2n − 1)(2n − 3)
+

an−1

2n − 1
− 3 an

(2n − 1)(2n+ 3)
− an+1

2n+ 3
+

(n+ 3) an+2

(2n+ 3)(2n+ 5)

+ ε

(
(n − 2)(n − 3) cn−3

4(2n − 1)(2n − 3)
− n(n − 2) cn−2

2(2n − 1)(2n − 3)

− (2n3 − 19n2 + 9n+ 18) cn−1

4(2n+ 3)(2n − 1)(2n − 3)
+

(2n2 + 2n − 3) cn

2(2n+ 3)(2n − 1)
− (2n3 + 25n2 + 53n+ 12) cn+1

4(2n+ 5)(2n+ 3)(2n − 1)

− (n+ 3)(n+ 1) cn+2

2(2n+ 5)(2n+ 3)
+

(n+ 4)(n+ 3) cn+3

4(2n+ 5)(2n+ 3)
+

(n − 2) en−3

4(2n − 1)(2n − 3)
+

(4n − 7) en−2

4(2n − 1)(2n − 3)

+
(10n2 + 5n − 33) en−1

4(2n+ 3)(2n − 1)(2n − 3)
− 5 en

2(2n+ 3)(2n − 1)
− (10n2 + 15n − 28) en+1

4(2n+ 5)(2n+ 3)(2n − 1)

+
(4n+ 11) en+2

4(2n+ 5)(2n+ 3)
− (n+ 3) en+3

4(2n+ 5)(2n+ 3)
− (n − 2)(n − 3)(n − 4) gn−3

4(2n − 1)(2n − 3)

+
(4n−3)(n−2)(n−3) gn−2

4(2n−1)(2n−3)
− (n−2)(10n3 + 19n2 −30n−9) gn−1

4(2n+ 3)(2n−1)(2n−3)
+

3(3n2 + 3n−1) gn

2(2n+ 3)(2n−1)

+
(n+ 3)(10n3 + 11n2 − 38n − 30) gn+1

4(2n+ 5)(2n+ 3)(2n − 1)
− (4n+ 7)(n+ 4)(n+ 3) gn+2

4(2n+ 5)(2n+ 3)

+
(n+ 5)(n+ 4)(n+ 3) gn+3

4(2n+ 5)(2n+ 3)

)
=0, n= 2, 3, . . . . (B 3)

Appendix C. Asymptotic approximations of A(s), E(s), and G(s)

In order to ensure the accuracy of the approximations made in (8.4) and (8.5), it is
necessary to establish that the functions A(s), E(s), and G(s) decay rapidly enough
over the width of the Gaussian factor, exp(εs2z/2), such that the Gaussian term
and all higher-order terms in ε within the integrals of (8.1)–(8.3) can be replaced
with unity to good approximation. As described earlier, inverse generalized Hankel
transforms can be performed on the expressions for C0(r), C1(r), and C2(r) to yield
the leading-order asymptotic expressions for the functions A(s), E(s), and G(s) given
by

A(s) ∼
∫ ∞

0

ε C1(r) J1(sr) r dr

=

∞∑
n=1

n∑
j=1

j+1∑
k=1

2(2)1/2j αw
j−1,k Pj,n an H

1,k +1/2
1 (s)

= 2 (2)1/2 e−s
(
a1 + (3 − 2 s) a2 + 2(3 − 4 s + s2) a3 + · · ·

)
,
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E(s) ∼
∫ ∞

0

C0(r) J0(sr) r dr

=

∞∑
n=1

n∑
j=1

j+1∑
k=1

(2)1/2j α+
j,k Pj,ncnH

0,k−1/2
0 (s)+

∞∑
n=0

n∑
j=0

j∑
k=0

(2)1/2 α−
j,k Pj,n en H

0,k + 1/2
0 (s)

=
(2)1/2 e−s

s
((1 − s) c1 + (3 − 7 s + 2 s2) c2 + 2(3 − 11 s +7 s2 − s3) c3 + · · ·)

+
(2)1/2 e−s

s
(e0 + (1 − 2 s) e1 + (1 − 4 s +2 s2) e2 + · · ·),

G(s) ∼
∫ ∞

0

C2(r) J2(sr) r dr

=

∞∑
n=1

n∑
j=1

j+1∑
k=1

(2)1/2j α+
j,k Pj,n cn H

0,k−1/2
2 (s)

+

∞∑
n=2

n∑
j=2

j+1∑
k=1

4(2)1/2 j (j − 1) α+
j−1,k Pj,n gn H

0,k +1/2
2 (s)

=
(2)1/2 e−s

s
((1 + s) c1 + (3 + 3 s − 2 s2) c2 + 2(3 + 3 s − 5 s2 + s3) c3 + · · ·)

+ 4 (2)1/2s e−s(g2 + (5 − 2 s) g3 + (15 − 12 s + 2 s2) g4 + · · ·),

where

Hb,c
a (s) =

∫ ∞

0

rb

(1 + r2)c
Ja(rs) r dr,

Pn−2k,n =
(−1)k

2n

(
n

k

)(
2n − 2k

n

)
is the (n − 2k)th coefficient to the nth Legendre

polynomial, and

α+
j,k =




α+
j−1,k − 2α+

j−1,k−1 for k � j +1

1 for k = 1
−1 for k = 2, j = 1
0 otherwise,

α−
j,k =




α−
j−1,k − 2α−

j−1,k−1 for k � j +1

1 for k = 0
−2 for k = 1, j = 1
0 otherwise,

αw
j,k =




αw
j−1,k − 2αw

j−1,k−1 for k � j +1

1 for k = 1
−2 for k = 2, j = 1
0 otherwise.
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